skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jinsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Increasingly functional microscopic machines are poised to have massive technical influence in areas including targeted drug delivery, precise surgical interventions, and environmental remediation. Such functionalities would increase markedly if collections of these microscopic machines were able to coordinate their function to achieve cooperative emergent behaviors. Implementing such coordination, however, requires a scalable strategy for synchronization—a key stumbling block for achieving collective behaviors of multiple autonomous microscopic units. Here, we show that pulse-coupled complementary metal-oxide semiconductor oscillators offer a tangible solution for such scalable synchronization. Specifically, we designed low-power oscillating modules with attached mechanical elements that exchange electronic pulses to advance their neighbor’s phase until the entire system is synchronized with the fastest oscillator or “leader.” We showed that this strategy is amenable to different oscillator connection topologies. The cooperative behaviors were robust to disturbances that scrambled the synchronization. In addition, when connections between oscillators were severed, the resulting subgroups synchronized on their own. This advance opens the door to functionalities in microscopic robot swarms that were once considered out of reach, ranging from autonomously induced fluidic transport to drive chemical reactions to cooperative building of physical structures at the microscale. 
    more » « less
    Free, publicly-accessible full text available November 27, 2025
  3. An electronically actuated artificial hinged ciliary platform capable of generating efficient bidirectional pumping at the microscale. 
    more » « less
  4. null (Ed.)